Changes between Version 15 and Version 16 of UWSummerStatsWorkshop


Ignore:
Timestamp:
Jul 24, 2015, 11:35:54 AM (9 years ago)
Author:
iovercast
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • UWSummerStatsWorkshop

    v15 v16  
    178178 * CI - cost of type I error, CII - cost of type II error 
    179179* Monte Carlo approximation (backtracking to yesterday) 
    180  *  
     180=== Thursday PM1 === 
     181* Linear regression models 
     182 * y = a0 + a1Xa + e (e=random variation between individuals) 
     183 * linear in the parameters 
     184 * I = covariance of outcomes. In the simple case you assume there is no covariance, so I is the identity matrix, but if there is covariance between the data or the animals or experiments then it can be incorporated with this variable. 
     185* Ordinary least squares estimation 
     186 * SSR(Beta) sum of squared residuals 
     187  * Find values for Beta such that sum of squared residuals is small to increase the likelihood value 
     188 * R - solve(), lm() "linear model" 
     189* Bayesian regression 
     190 * You can make probability statements 
     191  * probability some beta value >0 given  
     192 * OLS overfits when # of predictors is large 
     193 * can do model selection and averaging 
     194 * Beta is a vector 
     195 * If prior variance is very small, then posterior mean will concentrate around your prior mean. 
     196 * If you have a lot of data, as sample size grows mean will concentrate on OLS estimate. 
     197 * Similar logic to Bayesian inference 
     198* How to select prior for a vector of parameters 
     199 * g-prior 
     200 * Uncertainty in my prior is the same as uncertainy from n/g observations. 
     201 * Posterior calculations are relatively similar 
     202  * Posterior mean estimate is OLS estimate shrunken a little bit toward zero 
     203* "It's bad form not to have a picture at the end." 
     204=== Thursday PM2 === 
     205* Changing significance level as a function of ''n'' 
     206* a/(1-b) * prior odds of H0/H1 
     207 * a = alpha level, significance 
     208 * b = power 
     209* R is the ratio of costs 
     210* Significance level should decrease as n increases. 
     211* False discovery rate B/K 
     212* Bayesian False Discoveries 
     213 * Posterior odds = bayes factor * prior odds < R 
     214 * '''Depends on the sample size, but not on the number of test''' 
     215* '''Don't use bonferroni, use false discovery rate, but better still use bayesian methods.''' 
     216* Bayesian approaches in GWAS (Stephens & Balding 2009) 
    181217 
    182218==== quotes ==== 
     
    191227* "Improper posteriors are a no-no, that's just anarchy." 
    192228* "The only way to do this is to do it." 
     229* "... Nutritional epidemiology being the poster child for spurious results."